Add CesarSound code.

This commit is contained in:
mattbk
2024-01-26 10:26:49 -06:00
parent b2345cf54e
commit 1cda782316
10 changed files with 624 additions and 375 deletions

View File

@ -1,395 +1,308 @@
//----------- History ---------------
/*
/* This code has been modified from that written by Jeff Glass (KK9JEF) and documented in the following locations:
/* - https://kk9jef.wordpress.com/2015/11/09/40m-direction-conversion-receiver-in-the-polyakov-style/
/* - https://github.com/JeffersGlass/DDS_VFO
/*
*/
/**********************************************************************************************************
10kHz to 225MHz VFO / RF Generator with Si5351 and Arduino Nano, with Intermediate Frequency (IF) offset
(+ or -), RX/TX Selector for QRP Transceivers, Band Presets and Bargraph S-Meter. See the schematics for
wiring and README.txt for details. By J. CesarSound - ver 2.0 - Feb/2021.
***********************************************************************************************************/
#include <Arduino.h>
#include <Encoder.h>
#include <Wire.h>
//#include <LiquidCrystal.h>
#include <si5351.h>
//Libraries
#include <Wire.h> //IDE Standard
#include <Rotary.h> //Ben Buxton https://github.com/brianlow/Rotary
#include <si5351.h> //Etherkit https://github.com/etherkit/Si5351Arduino
#include <Adafruit_GFX.h> //Adafruit GFX https://github.com/adafruit/Adafruit-GFX-Library
#include <Adafruit_SSD1306.h> //Adafruit SSD1306 https://github.com/adafruit/Adafruit_SSD1306
//User preferences
//------------------------------------------------------------------------------------------------------------
#define IF 0 //Enter your IF frequency, ex: 455 = 455kHz, 10700 = 10.7MHz, 0 = to direct convert receiver or RF generator, + will add and - will subtract IF offfset.
#define BAND_INIT 7 //Enter your initial Band (1-21) at startup, ex: 1 = Freq Generator, 2 = 800kHz (MW), 7 = 7.2MHz (40m), 11 = 14.1MHz (20m).
#define XT_CAL_F 33000 //Si5351 calibration factor, adjust to get exatcly 10MHz. Increasing this value will decreases the frequency and vice versa.
#define S_GAIN 303 //Adjust the sensitivity of Signal Meter A/D input: 101 = 500mv; 202 = 1v; 303 = 1.5v; 404 = 2v; 505 = 2.5v; 1010 = 5v (max).
#define tunestep A0 //The pin used by tune step push button.
#define band A1 //The pin used by band selector push button.
#define rx_tx A2 //The pin used by RX / TX selector switch, RX = switch open, TX = switch closed to GND. When in TX, the IF value is not considered.
#define adc A3 //The pin used by Signal Meter A/D input.
//------------------------------------------------------------------------------------------------------------
//----------- Variables & Declarations ---------------
/*
* The current and desired LISTENING FREQUENCY, which is not always the frequency being output by the Si5351.
* In 'testing' and 'basic' modes, the output freqeuncy is equal to currFreq
* In 'polyakov' mode, the output frequency is half of curFreq
* In BFO mode, .........
* These adjustments are mode in the setFrequency_5351 function depending on the current mode held in currMode
*/
Rotary r = Rotary(2, 3);
Adafruit_SSD1306 display = Adafruit_SSD1306(128, 64, &Wire);
Si5351 si5351(0x60); //Si5351 I2C Address 0x60
long currFreq = 1800000; //in HZ
long ifFreq = 8865000; //in HZ
unsigned long freq, freqold, fstep;
long interfreq = IF, interfreqold = 0;
long cal = XT_CAL_F;
unsigned int smval;
byte encoder = 1;
byte stp, n = 1;
byte count, x, xo;
bool sts = 0;
unsigned int period = 100;
unsigned long time_now = 0;
//-----Enumerations of frequency steps and their labels for each mode----//
enum modes{mode_testing = 0, mode_basic, mode_polyakov, mode_bfo, mode_if};
const int NUM_MODES = 5;
int currMode = mode_basic;
const char* modeNames[NUM_MODES] = {"TEST", "VFO", "POLYA", "BFO", "IF"};
long steps[][10] = { //don't forget to update the MAX_STEPS_INDEX array below
{10000000, 5000000, 1000000, 500000, 100000, 10000, 1000, 10, 1}, //testing
{10000, 1000, 100, 10}, //basic
{1000, 100, 10, 1}, //polyakov
{1000, 100, 10, 1}, //bfo
{1000, 100, 10, 1} //IF Mode
};
const int NUM_STEP_OPTIONS[NUM_MODES] = {
10, //testing
4, //basic
4, //polyakov
4, //bfo
4 //if
};
const char* stepNames[][10] = {
{" 10MHz", " 5MHz", " 1MHz", "500Khz", "100KHz", " 10KHz", " 1KHz", " 100Hz", " 10Hz", " 1 Hz"}, //basic
{" 10KHz", " 1KHz", " 100 Hz", " 10 Hz"}, //basic
{" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"}, //polyakov
{" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"}, //BFO
{" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"} //IF
};
int stepIndex = 0; // holds the index of the currently selected step value
//-----AMATEUR BAND DEFININTIONS----------------//
//See function "getCurrentBand" below as well
const int NUM_BANDS = 9;
const char* bandNames[NUM_BANDS] = {"160m", "80m", "40m", "30m", "20m", "17m", "15m", "12m", "10m"};
const char* OUT_OF_BAND_LABEL = "OOB";
long bandEdges[NUM_BANDS][2] = {
{1800000, 2000000}, //160m
{3500000, 4000000}, //80m
{7000000, 7300000}, //40m
{10100000, 10150000}, //30m
{14000000, 14350000}, //20m
{18068000, 18168000}, //17m
{21000000, 21450000}, //15m
{24890000, 24990000}, //12m
{28000000, 29700000} //10m
};
/*
* Holds the last-seen frequency within each band. The list below is also the default location at bootup.
* This array is updated when the BAND button is used to change between bands.
* If the used has scrolled outside of a defined band and then presses the BAND button, they will
* still be advanced to the next band, but the band-return location will not be updated
*/
long lastBandFreq[NUM_BANDS] = {
1800000, //160m
3500000, //80m
7000000, //40m
10100000, //30m
14000000, //20m
18068000, //17m
21000000, //15m
24890000, //12m
28000000 //10m
};
/*Information on bandplan permissions and recommended communication modes is contained in the
* methods getPermission and getBandplanModes below
*/
//---------------------------------------------
long lastButtonPress[] = {0,0,0,0,0,0,0}; //holds the last timestamp, from millis(), that a pin changed state. Directly references the arduino output pin numbers, length may need to be increased
boolean buttonActive[] = {false, false, false, false, false, false, false};
long encoderPosition = 0;
boolean displayNeedsUpdate;
const long MIN_FREQ = 8500;
const long MAX_FREQ = 150000000;
//---------LCD SETUP-------//
// int PIN_RS = 7;
// int PIN_EN = 8;
// int PIN_DB4 = 9;
// int PIN_DB5 = 10;
// int PIN_DB6 = 11;
// int PIN_DB7 = 12;
//LiquidCrystal lcd(PIN_RS, PIN_EN, PIN_DB4, PIN_DB5, PIN_DB6, PIN_DB7);
//--------Si5351 Declaration---------------//
Si5351 si5351;
//SDA is on pin A4 for Arduino Uno
//SCL is on pin A5 for Arduino Uno
//--------Tuning Knob Interrupt Pins-------//
//Encoder knob(2, 3), pushbutton on 1
Encoder encoder(2, 3);
const int PIN_BUTTON_ENCODER = 1;
//Button Pins//
const int PIN_BUTTON_MODE = 4;
const int PIN_BUTTON_BAND = 0;
const int BUTTON_DEBOUNCE_TIME = 10; //milliseconds
//SWR Sensor Pins
const int PIN_SWR_FORWARD = A1;
const int PIN_SWR_REVERSE = A0;
// void displayInfo(){
// lcd.clear();
// // frequency information be centeredw within 11 spaces on the second line:
// if (currFreq >= 100000000) lcd.setCursor(3, 0);
// else if (currFreq > 10000000) lcd.setCursor(4, 0);
// else lcd.setCursor(5, 0);
// int mhz = int(currFreq/ 1000000);
// int khz = int((currFreq - (mhz*1000000)) / 1000);
// int hz = int(currFreq % 1000);
// int khzPad = 0;
// if (khz < 100) khzPad++;
// if (khz < 10) khzPad++;
// int hzPad = 0;
// if (hz < 100) hzPad++;
// if (hz < 10) hzPad++;
// lcd.print(mhz);
// lcd.print(".");
// for (int i = 0; i < khzPad; i++) lcd.print("0");
// lcd.print(khz);
// lcd.print(".");
// for (int i = 0; i < hzPad; i++) lcd.print("0");
// lcd.print(hz);
// //The current amateur band is printed in the top-right corner
// int currBand = getCurrentBand();
// if (currBand >= 0){
// char* currBandName = bandNames[currBand];
// lcd.setCursor(20-strlen(currBandName), 0);
// lcd.print(currBandName);
// }
// else{
// lcd.setCursor(20-strlen(OUT_OF_BAND_LABEL), 0);
// lcd.print(OUT_OF_BAND_LABEL);
// }
// //The license needed to operate on this frequency (ARRL, USA ONLY) is printed just below the band label
// lcd.setCursor (19, 1);
// lcd.print(getPermission());
// //Step Information should take the middle 11 spaces on the 3nd line
// //The first 5 symbols are "STEP:", leaving 6 chars for step info.
// lcd.setCursor(4, 2);
// lcd.print("STEP:");
// lcd.print(stepNames[currMode][stepIndex]);
// //Callsign is printed at the beginning of the 4th line
// lcd.setCursor(0, 3);
// lcd.print("KK9JEF");
// //The mode is printed on the 4th line with no label
// //lcd.setCursor(6, 3);
// lcd.setCursor(20-strlen(modeNames[currMode]), 3);
// lcd.print(modeNames[currMode]);
// //DEBUG
// //lcd.setCursor(0,0);
// //lcd.print(getCurrentBand());
// /*float fwd = analogRead(PIN_SWR_FORWARD);
// float rev = analogRead(PIN_SWR_REVERSE);
// float gamma = rev/fwd;
// float swr = (1 + abs(gamma)) / (1 - abs(gamma));
// lcd.setCursor(0, 1);
// lcd.print(int(fwd));
// lcd.setCursor(4, 1);
// lcd.print(int(rev));
// lcd.setCursor(8, 1);
// lcd.print(gamma);
// lcd.setCursor(14, 1);
// lcd.print(swr);*/
// }
boolean checkButtonPress(int pin){
long time = millis();
if (buttonActive[pin] && digitalRead(pin) == HIGH){
buttonActive[pin] = false;
lastButtonPress[pin] = time;
void set_frequency(short dir) {
if (encoder == 1) { //Up/Down frequency
if (dir == 1) freq = freq + fstep;
if (freq >= 225000000) freq = 225000000;
if (dir == -1) freq = freq - fstep;
if (fstep == 1000000 && freq <= 1000000) freq = 1000000;
else if (freq < 10000) freq = 10000;
}
else if (digitalRead(pin) == LOW && !buttonActive[pin] && time > lastButtonPress[pin] + BUTTON_DEBOUNCE_TIME){
buttonActive[pin] = true;
lastButtonPress[pin] = time;
return true;
}
return false;
}
void setFrequency_5351(long newFreq){
switch (currMode){
case mode_testing:
si5351.set_freq(newFreq * 100ULL, SI5351_CLK0);
break;
case mode_basic:
si5351.set_freq(newFreq * 100ULL, SI5351_CLK0);
break;
case mode_polyakov:
si5351.set_freq((newFreq / 2) * 100ULL, SI5351_CLK0);
break;
case mode_bfo:
si5351.set_freq(newFreq * 100ULL, SI5351_CLK0);
break;
case mode_if:
si5351.set_freq((newFreq + ifFreq) * 100UL, SI5351_CLK0); //VFO+IF
//VFO-IF
//IF-VFO
break;
if (encoder == 1) { //Up/Down graph tune pointer
if (dir == 1) n = n + 1;
if (n > 42) n = 1;
if (dir == -1) n = n - 1;
if (n < 1) n = 42;
}
}
//Returns the index of the current amateur radio band based on currFreq. Does not include the 60m band
//Returns -1 if out of band, but within the HF amateur turning range
//returns -2 if out of band and lower than the lowest defined band
//returns -3 if out of band and higher than the highest defined band
int getCurrentBand(){
if (currFreq < bandEdges[0][0]) return -2; //we are lower than the lower edge of the lowest defined band
if (currFreq > bandEdges[NUM_BANDS-1][1]) return -3; //We are higher than the upper edge of the highest defined band
for (int i = 0; i < NUM_BANDS; i++){
if (currFreq >= bandEdges[i][0] && currFreq <= bandEdges[i][1]){return i;} //We are within a band
}
return -1;
ISR(PCINT2_vect) {
char result = r.process();
if (result == DIR_CW) set_frequency(1);
else if (result == DIR_CCW) set_frequency(-1);
}
char getPermission(){
if (getCurrentBand() < 0) return ' ';
//160m
if (currFreq >= 1800000 && currFreq <= 2000000) return 'G';
//80m
if (currFreq >= 3525000 && currFreq <= 3600000) return 'T';
if ((currFreq >= 3525000 && currFreq <= 3600000) || (currFreq >= 3800000 && currFreq <= 4000000)) return 'G';
if ((currFreq >= 3525000 && currFreq <= 3600000) || (currFreq >= 3700000 && currFreq <= 4000000)) return 'A';
if (currFreq >= 3500000 && currFreq <= 4000000) return 'E';
//40m
if (currFreq >= 7025000 && currFreq <= 7125000) return 'T';
if ((currFreq >= 7025000 && currFreq <= 7125000) || (currFreq >= 7175000 && currFreq <= 7300000)) return 'G';
if (currFreq >= 7025000 && currFreq <= 7300000) return 'A';
if (currFreq >= 7000000 && currFreq <= 7300000) return 'E';
//30m
if (currFreq >= 10100000 && currFreq <= 10150000) return 'G';
//20m
if ((currFreq >= 14025000 && currFreq <= 14150000) || (currFreq >= 14225000 && currFreq <= 14350000)) return 'G';
if ((currFreq >= 14025000 && currFreq <= 14150000) || (currFreq >= 14175000 && currFreq <= 14350000)) return 'A';
if (currFreq >= 14000000 && currFreq <= 14350000) return 'E';
//17m
if (currFreq >= 18068000 && currFreq <= 18168000) return 'G';
//15m
if (currFreq >= 21025000 && currFreq <= 21200000) return 'T';
if ((currFreq >= 21025000 && currFreq <= 21200000) || (currFreq >= 21275000 && currFreq <= 21450000)) return 'G';
if ((currFreq >= 21025000 && currFreq <= 21200000) || (currFreq >= 21225000 && currFreq <= 21450000)) return 'A';
if (currFreq >= 21000000 && currFreq <= 21450000) return 'E';
//12m
if (currFreq >= 24890000 && currFreq <= 24990000) return 'G';
//10m
if (currFreq >= 28000000 && currFreq <= 28500000) return 'T';
if (currFreq >= 28000000 && currFreq <= 29700000) return 'G';
return 'X';
void tunegen() {
si5351.set_freq((freq + (interfreq * 1000ULL)) * 100ULL, SI5351_CLK0);
}
void setup(){
// inialize LCD, display welcome message
//lcd.begin(20, 4);
//delay(250);
//lcd.setCursor(4, 1);
//lcd.print("VFO STARTING");
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);
si5351.set_freq(currFreq * 100ULL, SI5351_CLK0);
si5351.output_enable(SI5351_CLK0, 1);
si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_8MA);
void displayfreq() {
unsigned int m = freq / 1000000;
unsigned int k = (freq % 1000000) / 1000;
unsigned int h = (freq % 1000) / 1;
display.clearDisplay();
display.setTextSize(2);
char buffer[15] = "";
if (m < 1) {
display.setCursor(41, 1); sprintf(buffer, "%003d.%003d", k, h);
}
else if (m < 100) {
display.setCursor(5, 1); sprintf(buffer, "%2d.%003d.%003d", m, k, h);
}
else if (m >= 100) {
unsigned int h = (freq % 1000) / 10;
display.setCursor(5, 1); sprintf(buffer, "%2d.%003d.%02d", m, k, h);
}
display.print(buffer);
}
void setstep() {
switch (stp) {
case 1: stp = 2; fstep = 1; break;
case 2: stp = 3; fstep = 10; break;
case 3: stp = 4; fstep = 1000; break;
case 4: stp = 5; fstep = 5000; break;
case 5: stp = 6; fstep = 10000; break;
case 6: stp = 1; fstep = 1000000; break;
}
}
void bandpresets() {
switch (count) {
case 1: freq = 100000; tunegen(); break;
case 2: freq = 800000; break;
case 3: freq = 1800000; break;
case 4: freq = 3650000; break;
case 5: freq = 4985000; break;
case 6: freq = 6180000; break;
case 7: freq = 7200000; break;
case 8: freq = 10000000; break;
case 9: freq = 11780000; break;
case 10: freq = 13630000; break;
case 11: freq = 14100000; break;
case 12: freq = 15000000; break;
case 13: freq = 17655000; break;
case 14: freq = 21525000; break;
case 15: freq = 27015000; break;
case 16: freq = 28400000; break;
case 17: freq = 50000000; break;
case 18: freq = 100000000; break;
case 19: freq = 130000000; break;
case 20: freq = 144000000; break;
case 21: freq = 220000000; break;
}
si5351.pll_reset(SI5351_PLLA);
stp = 4; setstep();
}
void inc_preset() {
count++;
if (count > 21) count = 1;
bandpresets();
delay(50);
}
void bandlist() {
display.setTextSize(2);
display.setCursor(0, 25);
if (count == 1) display.print("GEN"); if (count == 2) display.print("MW"); if (count == 3) display.print("160m"); if (count == 4) display.print("80m");
if (count == 5) display.print("60m"); if (count == 6) display.print("49m"); if (count == 7) display.print("40m"); if (count == 8) display.print("31m");
if (count == 9) display.print("25m"); if (count == 10) display.print("22m"); if (count == 11) display.print("20m"); if (count == 12) display.print("19m");
if (count == 13) display.print("16m"); if (count == 14) display.print("13m"); if (count == 15) display.print("11m"); if (count == 16) display.print("10m");
if (count == 17) display.print("6m"); if (count == 18) display.print("WFM"); if (count == 19) display.print("AIR"); if (count == 20) display.print("2m");
if (count == 21) display.print("1m");
if (count == 1) interfreq = 0; else if (!sts) interfreq = IF;
}
void drawbargraph() {
byte y = map(n, 1, 42, 1, 14);
display.setTextSize(1);
//Pointer
display.setCursor(0, 48); display.print("TU");
switch (y) {
case 1: display.fillRect(15, 48, 2, 6, WHITE); break;
case 2: display.fillRect(20, 48, 2, 6, WHITE); break;
case 3: display.fillRect(25, 48, 2, 6, WHITE); break;
case 4: display.fillRect(30, 48, 2, 6, WHITE); break;
case 5: display.fillRect(35, 48, 2, 6, WHITE); break;
case 6: display.fillRect(40, 48, 2, 6, WHITE); break;
case 7: display.fillRect(45, 48, 2, 6, WHITE); break;
case 8: display.fillRect(50, 48, 2, 6, WHITE); break;
case 9: display.fillRect(55, 48, 2, 6, WHITE); break;
case 10: display.fillRect(60, 48, 2, 6, WHITE); break;
case 11: display.fillRect(65, 48, 2, 6, WHITE); break;
case 12: display.fillRect(70, 48, 2, 6, WHITE); break;
case 13: display.fillRect(75, 48, 2, 6, WHITE); break;
case 14: display.fillRect(80, 48, 2, 6, WHITE); break;
}
//Bargraph
display.setCursor(0, 57); display.print("SM");
switch (x) {
case 14: display.fillRect(80, 58, 2, 6, WHITE);
case 13: display.fillRect(75, 58, 2, 6, WHITE);
case 12: display.fillRect(70, 58, 2, 6, WHITE);
case 11: display.fillRect(65, 58, 2, 6, WHITE);
case 10: display.fillRect(60, 58, 2, 6, WHITE);
case 9: display.fillRect(55, 58, 2, 6, WHITE);
case 8: display.fillRect(50, 58, 2, 6, WHITE);
case 7: display.fillRect(45, 58, 2, 6, WHITE);
case 6: display.fillRect(40, 58, 2, 6, WHITE);
case 5: display.fillRect(35, 58, 2, 6, WHITE);
case 4: display.fillRect(30, 58, 2, 6, WHITE);
case 3: display.fillRect(25, 58, 2, 6, WHITE);
case 2: display.fillRect(20, 58, 2, 6, WHITE);
case 1: display.fillRect(15, 58, 2, 6, WHITE);
}
}
void layout() {
display.setTextColor(WHITE);
display.drawLine(0, 20, 127, 20, WHITE);
display.drawLine(0, 43, 127, 43, WHITE);
display.drawLine(105, 24, 105, 39, WHITE);
display.drawLine(87, 24, 87, 39, WHITE);
display.drawLine(87, 48, 87, 63, WHITE);
display.drawLine(15, 55, 82, 55, WHITE);
display.setTextSize(1);
display.setCursor(59, 23);
display.print("STEP");
display.setCursor(54, 33);
if (stp == 2) display.print(" 1Hz"); if (stp == 3) display.print(" 10Hz"); if (stp == 4) display.print(" 1kHz");
if (stp == 5) display.print(" 5kHz"); if (stp == 6) display.print("10kHz"); if (stp == 1) display.print(" 1MHz");
display.setTextSize(1);
display.setCursor(92, 48);
display.print("IF:");
display.setCursor(92, 57);
display.print(interfreq);
display.print("k");
display.setTextSize(1);
display.setCursor(110, 23);
if (freq < 1000000) display.print("kHz");
if (freq >= 1000000) display.print("MHz");
display.setCursor(110, 33);
if (interfreq == 0) display.print("VFO");
if (interfreq != 0) display.print("L O");
display.setCursor(91, 28);
if (!sts) display.print("RX"); if (!sts) interfreq = IF;
if (sts) display.print("TX"); if (sts) interfreq = 0;
bandlist(); drawbargraph();
display.display();
}
void sgnalread() {
smval = analogRead(adc); x = map(smval, 0, S_GAIN, 1, 14); if (x > 14) x = 14;
}
void statup_text() {
display.setTextSize(1); display.setCursor(13, 18);
display.print("Si5351 VFO/RF GEN");
display.setCursor(6, 40);
display.print("JCR RADIO - Ver 2.0");
display.display(); delay(2000);
}
void setup() {
Wire.begin();
display.begin(SSD1306_SWITCHCAPVCC, 0x3C);
display.clearDisplay();
display.setTextColor(WHITE);
display.display();
pinMode(2, INPUT_PULLUP);
pinMode(3, INPUT_PULLUP);
pinMode(tunestep, INPUT_PULLUP);
pinMode(band, INPUT_PULLUP);
pinMode(rx_tx, INPUT_PULLUP);
//statup_text(); //If you hang on startup, comment
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0, 0);
si5351.set_correction(cal, SI5351_PLL_INPUT_XO);
si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_8MA);
si5351.output_enable(SI5351_CLK0, 1); //1 - Enable / 0 - Disable CLK
si5351.output_enable(SI5351_CLK1, 0);
si5351.output_enable(SI5351_CLK2, 0);
delay(750);
//knob.write(0);
pinMode(PIN_BUTTON_ENCODER, INPUT);
digitalWrite(PIN_BUTTON_ENCODER, HIGH);
pinMode(PIN_BUTTON_MODE, INPUT);
digitalWrite(PIN_BUTTON_MODE, HIGH);
pinMode(PIN_BUTTON_BAND, INPUT);
digitalWrite(PIN_BUTTON_BAND, HIGH);
si5351.output_enable(SI5351_CLK2, 0);
pinMode(PIN_SWR_FORWARD, INPUT);
pinMode(PIN_SWR_REVERSE, INPUT);
PCICR |= (1 << PCIE2);
PCMSK2 |= (1 << PCINT18) | (1 << PCINT19);
sei();
//lcd.clear();
//lcd.setCursor(2, 7);
//lcd.print("WELCOME!");
//delay(500);
//displayInfo();
count = BAND_INIT;
bandpresets();
stp = 4;
setstep();
}
void loop(){
//if (displayNeedsUpdate) {displayInfo();}
//delay(80);
//detect whether encoder has changed position
long reading = encoder.read();
long encoderChange = reading - encoderPosition;
encoderPosition = reading;
displayNeedsUpdate = false;
//step up or down or change step size, for either button presses or encoder turns
if ((encoderChange > 0)){currFreq += steps[currMode][stepIndex]; currFreq = min(currFreq, MAX_FREQ); setFrequency_5351(currFreq); displayNeedsUpdate = true;}
if ((encoderChange < 0)){currFreq -= steps[currMode][stepIndex]; currFreq = max(currFreq, MIN_FREQ); setFrequency_5351(currFreq); displayNeedsUpdate = true;}
//pressing the encoder button increments through the possible step sizes for each mode
if (checkButtonPress(PIN_BUTTON_ENCODER)){stepIndex = (stepIndex + 1) % (NUM_STEP_OPTIONS[currMode]); displayNeedsUpdate = true;}
//pressing the mode button cycles through the available modes
if (checkButtonPress(PIN_BUTTON_MODE)){currMode = (currMode+1) % NUM_MODES; stepIndex = 0; setFrequency_5351(currFreq); displayNeedsUpdate = true;}
/*The mode button: if currFreq is inside an amateur band, save that frequency as the one to return to when
* the user returns to this band, and jump to the return frequency for the next higher band. Otherwise,
* just jump to the next higher band
*/
if (checkButtonPress(PIN_BUTTON_BAND)){
int currBand = getCurrentBand();
if (currBand >= 0){
lastBandFreq[currBand] = currFreq;
currFreq = lastBandFreq[(getCurrentBand() + 1) % NUM_BANDS];
setFrequency_5351(currFreq);
}
else if (currBand == -2 || currBand == -3){
currFreq = lastBandFreq[0];
setFrequency_5351(currFreq);
}
else if (currBand == -1){
for (int i = 0; i < NUM_BANDS; i++){
if (currFreq < lastBandFreq[i]){currFreq = lastBandFreq[i]; setFrequency_5351(currFreq); break;}
}
}
displayNeedsUpdate = true;
void loop() {
if (freqold != freq) {
time_now = millis();
tunegen();
freqold = freq;
}
if (interfreqold != interfreq) {
time_now = millis();
tunegen();
interfreqold = interfreq;
}
if (xo != x) {
time_now = millis();
xo = x;
}
if (digitalRead(tunestep) == LOW) {
time_now = (millis() + 300);
setstep();
delay(300);
}
if (digitalRead(band) == LOW) {
time_now = (millis() + 300);
inc_preset();
delay(300);
}
if (digitalRead(rx_tx) == LOW) {
time_now = (millis() + 300);
sts = 1;
} else sts = 0;
if ((time_now + period) > millis()) {
displayfreq();
layout();
}
sgnalread();
}