aprs_tool/app.py

81 lines
2.7 KiB
Python
Raw Normal View History

2023-04-05 16:28:39 -05:00
from flask import Flask
from flask_restful import Resource, Api, reqparse
from datetime import date, timedelta
import configparser
2023-04-06 14:34:59 -05:00
# TODO Can we do it without pandas and numpy? They are so big.
#import pandas as pd
#import numpy as np
import csv
2023-04-05 16:28:39 -05:00
import ast
import glob
import json
2023-04-05 16:28:39 -05:00
app = Flask(__name__)
2023-04-05 16:58:35 -05:00
api = Api(app)
def read_config():
config = configparser.ConfigParser()
config.read('config.ini')
return config
def read_logs(log_folder):
# Read some log files
# Zulu time, so let's look at tomorrow, today, and yesterday.
# TODO Load new files into a database on a schedule?
today = date.today()
yesterday = today - timedelta(days = 1)
tomorrow = today + timedelta(days = 1)
file_list = glob.glob(log_folder+str(yesterday)+"*") + \
glob.glob(log_folder+str(today)+"*") + \
glob.glob(log_folder+str(tomorrow)+"*")
2023-04-06 14:34:59 -05:00
# list_stacked = pd.DataFrame()
# for file in file_list:
# file1 = pd.read_csv(file)
# list_stacked = pd.concat([list_stacked, file1])
# https://stackoverflow.com/a/66071962
json_array = []
for file in file_list:
2023-04-06 14:34:59 -05:00
with open(file, encoding='utf-8') as csvf:
csvReader = csv.DictReader(csvf)
for row in csvReader:
#add this python dict to json array
json_array.append(row)
# TODO Can we do this without numpy?
2023-04-06 14:34:59 -05:00
#list_stacked.replace(np.nan, 0, inplace=True)
#print(list_stacked.head())
2023-04-06 14:34:59 -05:00
return(json_array)
2023-04-06 14:34:59 -05:00
# class Users(Resource):
# def get(self):
# data = pd.read_csv('users.csv') # read CSV
# data = data.to_dict(orient = 'records') # convert dataframe to dictionary
# return {'data': data}, 200 # return data and 200 OK code
2023-04-06 14:34:59 -05:00
# class Locations(Resource):
# def get(self):
# data = pd.read_csv('locations.csv') # read CSV
# data = data.to_dict(orient = 'records') # convert dataframe to dictionary
# return {'data': data}, 200 # return data and 200 OK code
class Packets(Resource):
def get(self):
2023-04-06 14:34:59 -05:00
#data = read_logs(log_folder) # re-reads the log files every time
#data = data.to_dict(orient = 'records') # convert dataframe to dictionary
return {'data': data}, 200 # return data and 200 OK code
# Read config
config = read_config()
log_folder = config['Settings']['log_folder']
# Load logs first (just to check for errors before page loads)
data = read_logs(log_folder)
2023-04-06 14:34:59 -05:00
#api.add_resource(Users, '/users') # '/users' is our entry point for Users
#api.add_resource(Locations, '/locations') # and '/locations' is our entry point for Locations
api.add_resource(Packets, '/packets') # and '/locations' is our entry point for Locations
2023-04-05 16:58:35 -05:00
if __name__ == '__main__':
app.run(debug=True) # run our Flask app