aprs_tool/app.py

47 lines
1.6 KiB
Python
Raw Normal View History

2023-04-05 16:28:39 -05:00
from flask import Flask
from flask_restful import Resource, Api, reqparse
import pandas as pd
2023-04-05 18:27:14 -05:00
import numpy as np
2023-04-05 16:28:39 -05:00
import ast
import kiss
import glob
2023-04-05 16:28:39 -05:00
app = Flask(__name__)
2023-04-05 16:58:35 -05:00
api = Api(app)
class Users(Resource):
def get(self):
data = pd.read_csv('users.csv') # read CSV
2023-04-05 19:05:57 -05:00
data = data.to_dict(orient = 'records') # convert dataframe to dictionary
2023-04-05 16:58:35 -05:00
return {'data': data}, 200 # return data and 200 OK code
2023-04-05 16:58:35 -05:00
class Locations(Resource):
def get(self):
data = pd.read_csv('locations.csv') # read CSV
2023-04-05 19:05:57 -05:00
data = data.to_dict(orient = 'records') # convert dataframe to dictionary
2023-04-05 16:58:35 -05:00
return {'data': data}, 200 # return data and 200 OK code
# Read some log files
list_stacked = pd.DataFrame()
file_list = glob.glob("logs/*.log")
2023-04-05 18:27:14 -05:00
#print(file_list)
for file in file_list:
file1 = pd.read_csv(file)
list_stacked = pd.concat([list_stacked, file1])
2023-04-05 18:27:14 -05:00
# TODO Can we do this without numpy?
list_stacked.replace(np.nan, 0, inplace=True)
2023-04-05 19:05:57 -05:00
#print(list_stacked.head())
class Packets(Resource):
def get(self):
data = list_stacked
2023-04-05 19:05:57 -05:00
data = data.to_dict(orient = 'records') # convert dataframe to dictionary
#data = data.to_json(orient='records')
return {'data': data}, 200 # return data and 200 OK code
2023-04-05 16:58:35 -05:00
api.add_resource(Users, '/users') # '/users' is our entry point for Users
api.add_resource(Locations, '/locations') # and '/locations' is our entry point for Locations
api.add_resource(Packets, '/packets') # and '/locations' is our entry point for Locations
2023-04-05 16:58:35 -05:00
if __name__ == '__main__':
app.run(debug=True) # run our Flask app