Init.
This commit is contained in:
6
.gitignore
vendored
Normal file
6
.gitignore
vendored
Normal file
@ -0,0 +1,6 @@
|
||||
.Rproj.user
|
||||
.Rhistory
|
||||
.RData
|
||||
.Ruserdata
|
||||
*.ini
|
||||
/data
|
73
bin/find-small-winter-cities.R
Normal file
73
bin/find-small-winter-cities.R
Normal file
@ -0,0 +1,73 @@
|
||||
|
||||
# This project is to try to figure out similarity among
|
||||
# Grand Forks/East Grand Forks and US cities of similar size
|
||||
# in similar climate. The results will then be used to reseearch
|
||||
# what those cities are doing for bike infra and how it is
|
||||
# working out for them.
|
||||
|
||||
# TODO make this Rmd file
|
||||
|
||||
library(tidycensus)
|
||||
library(tidyverse)
|
||||
library(ggplot2)
|
||||
library(tigris)
|
||||
library(viridis)
|
||||
library(ini)
|
||||
library(sf)
|
||||
# Load the census API key, the ini file should be of format
|
||||
# [keys]
|
||||
# key = your_key_here
|
||||
census_api_key(read.ini('census_api_key.ini')$keys$key)
|
||||
|
||||
# Get a list of variables
|
||||
vars <- load_variables("2018", "acs5")
|
||||
|
||||
# This includes a broader area
|
||||
# us_metro <- get_acs(geography = "metropolitan statistical area/micropolitan statistical area",
|
||||
# variables = "B01001_001",
|
||||
# geometry = T)
|
||||
# This is just urban
|
||||
# Code is for total population, all ages
|
||||
# https://www.census.gov/data/developers/data-sets/acs-1year/notes-on-acs-api-variable-formats.html
|
||||
us_urban <- get_acs(geography = "urban area",
|
||||
variables = "B01001_001")
|
||||
|
||||
# Geometry is not in tidycensus yet, so we have to get it this way
|
||||
# Download it once and save locally
|
||||
#urban_areas_geom <- urban_areas(class = "sf")
|
||||
#save(urban_areas_geom, file = "data/urban_areas_tigris.RData")
|
||||
# Load saved variable
|
||||
load("data/urban_areas_tigris.RData")
|
||||
|
||||
us_urban_joined <- left_join(urban_areas_geom,
|
||||
us_urban,
|
||||
by = c("GEOID10" = "GEOID"))
|
||||
|
||||
# Prove you can plot the largest cities
|
||||
ggplot(us_urban_joined %>% filter(estimate > 5000000)) +
|
||||
geom_sf(aes(fill = estimate),
|
||||
color = NA) +
|
||||
theme_minimal() +
|
||||
scale_fill_viridis()
|
||||
|
||||
# Define range of populations to include
|
||||
gfk_pop <- us_urban_clean %>%
|
||||
filter(NAME == "Grand Forks, ND--MN Urbanized Area (2010)") %>%
|
||||
mutate(high = estimate + (estimate * 0.1),
|
||||
low = estimate - (estimate * 0.1))
|
||||
|
||||
# Clean data
|
||||
us_urban_clean <- us_urban_joined %>%
|
||||
select(NAME, variable, estimate, moe) %>%
|
||||
st_centroid() %>%
|
||||
filter(estimate < gfk_pop[['high']],
|
||||
estimate > gfk_pop[['low']])
|
||||
|
||||
# TODO bring in climate data
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
15
small-winter-cities.Rproj
Normal file
15
small-winter-cities.Rproj
Normal file
@ -0,0 +1,15 @@
|
||||
Version: 1.0
|
||||
|
||||
RestoreWorkspace: Default
|
||||
SaveWorkspace: Default
|
||||
AlwaysSaveHistory: Default
|
||||
|
||||
EnableCodeIndexing: Yes
|
||||
UseSpacesForTab: Yes
|
||||
NumSpacesForTab: 4
|
||||
Encoding: UTF-8
|
||||
|
||||
RnwWeave: knitr
|
||||
LaTeX: pdfLaTeX
|
||||
|
||||
StripTrailingWhitespace: Yes
|
Reference in New Issue
Block a user