Stub out Python script to generate Markov chains.
This commit is contained in:
23
bin/311_ebooks.py
Normal file
23
bin/311_ebooks.py
Normal file
@ -0,0 +1,23 @@
|
|||||||
|
|
||||||
|
|
||||||
|
import markovify #https://github.com/jsvine/markovify
|
||||||
|
import sqlite3 #to read db
|
||||||
|
|
||||||
|
# Open the db
|
||||||
|
conn = sqlite3.connect('requests.sqlite')
|
||||||
|
c = conn.cursor()
|
||||||
|
|
||||||
|
def get_descriptions():
|
||||||
|
c.execute('SELECT description FROM requests')
|
||||||
|
data = c.fetchall()
|
||||||
|
return(data)
|
||||||
|
|
||||||
|
# Get descriptions and convert to strings from tuples
|
||||||
|
b = ["".join(str(x)) for x in get_descriptions()]
|
||||||
|
|
||||||
|
# Build the model.
|
||||||
|
text_model = markovify.Text(b)
|
||||||
|
|
||||||
|
# Print three randomly-generated sentences of no more than 280 characters
|
||||||
|
for i in range(3):
|
||||||
|
print(text_model.make_short_sentence(280))
|
Reference in New Issue
Block a user