Stub out Python script to generate Markov chains.
This commit is contained in:
		
							
								
								
									
										23
									
								
								bin/311_ebooks.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								bin/311_ebooks.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,23 @@
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import markovify #https://github.com/jsvine/markovify
 | 
				
			||||||
 | 
					import sqlite3 #to read db
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Open the db
 | 
				
			||||||
 | 
					conn = sqlite3.connect('requests.sqlite')
 | 
				
			||||||
 | 
					c = conn.cursor()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_descriptions():
 | 
				
			||||||
 | 
					    c.execute('SELECT description FROM requests')
 | 
				
			||||||
 | 
					    data = c.fetchall()
 | 
				
			||||||
 | 
					    return(data)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Get descriptions and convert to strings from tuples
 | 
				
			||||||
 | 
					b = ["".join(str(x)) for x in get_descriptions()]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Build the model.
 | 
				
			||||||
 | 
					text_model = markovify.Text(b)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Print three randomly-generated sentences of no more than 280 characters
 | 
				
			||||||
 | 
					for i in range(3):
 | 
				
			||||||
 | 
					    print(text_model.make_short_sentence(280))
 | 
				
			||||||
		Reference in New Issue
	
	Block a user