Add WSPR and CQ code to VFO.

This commit is contained in:
JeffersGlass 2016-04-07 23:25:59 -05:00
parent e2c313f8c6
commit f7349de7a8
2 changed files with 233 additions and 22 deletions

View File

@ -43,7 +43,7 @@ char* stepNames[][10] = {
{" 10MHz", " 5MHz", " 1MHz", "500Khz", "100KHz", " 10KHz", " 1KHz", " 100Hz", " 10Hz", " 1 Hz"}, //basic {" 10MHz", " 5MHz", " 1MHz", "500Khz", "100KHz", " 10KHz", " 1KHz", " 100Hz", " 10Hz", " 1 Hz"}, //basic
{" 10KHz", " 1KHz", " 100 Hz", " 10 Hz"}, //basic {" 10KHz", " 1KHz", " 100 Hz", " 10 Hz"}, //basic
{" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"}, //polyakov {" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"}, //polyakov
{" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"} //BFO {" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"}, //BFO
{" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"} //IF {" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"} //IF
}; };
@ -208,7 +208,7 @@ void loop(){
} }
} }
displayNeedsUpdate = true; displayNeedsUpdate = true;
} }s
} }
void displayInfo(){ void displayInfo(){
@ -321,7 +321,7 @@ void setFrequency_5351(long newFreq){
si5351.set_freq((newFreq + ifFreq) * 100UL, 0ULL, SI5351_CLK0); //VFO+IF si5351.set_freq((newFreq + ifFreq) * 100UL, 0ULL, SI5351_CLK0); //VFO+IF
//VFO-IF //VFO-IF
//IF-VFO //IF-VFO
beak; break;
} }
} }

View File

@ -3,7 +3,6 @@
#include <LiquidCrystal.h> #include <LiquidCrystal.h>
#include <si5351.h> #include <si5351.h>
//-----------Variables & Declarations--------------- //-----------Variables & Declarations---------------
/* /*
* The current and desired LISTENING FREQUENCY, which is not always the frequency being output by the Si5351. * The current and desired LISTENING FREQUENCY, which is not always the frequency being output by the Si5351.
@ -15,45 +14,80 @@
long currFreq = 1800000; long currFreq = 1800000;
//FOR CQ MODE:
char CQ[] = "-.-. --.-";
char DE[] = "-.. .";
char morseCallsign[] = "-.- -.- ----. .--- . ..-.";
int morseCallsignLength = 25;
long morseElementLength = 70; //ms
//FOR WSPR MODE
int correctionFactor = 0; //adjusts the offset of the Si5351
int WSPR_TRANSMISSION_DATA[] = { //KK9JEF EN61 30
3,3,2,0,0,0,0,0,3,0,0,2,1,1,1,0,0,2,1,2,2,1,0,3,1,3,1,2,2,0,
0,0,2,2,1,0,2,3,0,1,2,0,2,2,2,2,3,2,3,1,2,0,1,3,2,3,2,0,2,1,
1,0,1,0,0,2,2,1,1,0,1,0,3,0,1,2,1,0,2,3,0,0,1,0,1,1,2,2,2,3,
1,0,1,2,3,2,2,0,1,2,2,0,2,0,1,2,2,3,0,2,1,1,1,0,1,3,2,2,3,1,
0,1,0,2,2,1,1,1,2,0,0,0,0,3,0,1,0,2,3,1,2,2,2,2,0,2,2,3,1,0,
1,2,1,3,2,0,2,3,3,2,0,2};
/*
int WSPR_TRANSMISSION_DATA[] = { //KK9JEF EN61 27
3,3,2,0,0,2,0,2,3,0,0,2,1,3,1,2,0,2,1,0,2,3,0,1,1,1,1,0,2,2,
0,0,2,2,1,2,2,3,0,1,2,2,2,2,2,0,3,0,3,1,2,0,1,3,2,1,2,0,2,3,
1,0,1,2,0,2,2,1,1,0,1,0,3,2,1,0,1,2,2,3,0,0,1,0,1,1,2,2,2,3,
1,2,1,2,3,0,2,0,1,0,2,0,2,0,1,2,2,3,0,0,1,1,1,0,1,1,2,0,3,3,
0,3,0,0,2,1,1,3,2,0,0,2,0,1,0,3,0,2,3,1,2,2,2,0,0,2,2,3,1,0,
1,0,1,1,2,0,2,1,3,0,0,2};
*/
//-----Enumerations of frequency steps and their labels for each mode----// //-----Enumerations of frequency steps and their labels for each mode----//
enum modes{mode_testing = 0, mode_basic, mode_polyakov, mode_bfo}; enum modes{mode_testing = 0, mode_basic, mode_polyakov, mode_bfo, mode_WSPR, mode_CQ};
const int NUM_MODES = 4; const int NUM_MODES = 6;
int currMode = mode_basic; int currMode = mode_basic;
char* modeNames[NUM_MODES] = {"TEST", "VFO", "POLYA", "BFO"}; char* modeNames[NUM_MODES] = {"TEST", "VFO", "POLYA", "BFO", "WSPR", "CQ"};
long steps[][10] = { //don't forget to update the NUM_STEP_OPTIONS array below long steps[][10] = { //don't forget to update the NUM_STEP_OPTIONS array below
{10000000, 5000000, 1000000, 500000, 100000, 10000, 1000, 10, 1}, //testing {10000000, 5000000, 1000000, 500000, 100000, 10000, 1000, 10, 1}, //testing
{10000, 1000, 100, 10}, //basic {10000, 1000, 100, 10}, //basic
{1000, 100, 10, 1}, //polyakov {1000, 100, 10, 1}, //polyakov
{1000, 100, 10, 1} //bfo {1000, 100, 10, 1}, //bfo
{5}, //WSPR
{500} //CQ
}; };
const int NUM_STEP_OPTIONS[NUM_MODES] = { const int NUM_STEP_OPTIONS[NUM_MODES] = {
10, //testing 10, //testing
4, //basic 4, //basic
4, //polyakov 4, //polyakov
4 //bfo 4, //bfo
1, //wspr
1 //cq
}; };
char* stepNames[][10] = { char* stepNames[][10] = {
{" 10MHz", " 5MHz", " 1MHz", "500Khz", "100KHz", " 10KHz", " 1KHz", " 100Hz", " 10Hz", " 1 Hz"}, //basic {" 10MHz", " 5MHz", " 1MHz", "500Khz", "100KHz", " 10KHz", " 1KHz", " 100Hz", " 10Hz", " 1 Hz"}, //basic
{" 10KHz", " 1KHz", " 100 Hz", " 10 Hz"}, //basic {" 10KHz", " 1KHz", " 100Hz", " 10 Hz"}, //basic
{" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"}, //polyakov {" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"}, //polyakov
{" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"} //BFO {" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"}, //BFO
{" 5 Hz"}, //WSPR
{" 500Hz"} //CQ
}; };
int stepIndex = 0; // holds the index of the currently selected step value int stepIndex = 0; // holds the index of the currently selected step value
//-----AMATEUR BAND DEFININTIONS----------------// //-----AMATEUR BAND DEFININTIONS----------------//
//See function "getCurrentBand" below as well //See function "getCurrentBand" below as well
const int NUM_BANDS = 9; const int NUM_BANDS = 10;
char* bandNames[NUM_BANDS] = {"160m", "80m", "40m", "30m", "20m", "17m", "15m", "12m", "10m"}; char* bandNames[NUM_BANDS] = {"160m", "80m", "60m", "40m", "30m", "20m", "17m", "15m", "12m", "10m"};
char* OUT_OF_BAND_LABEL = "OOB"; char* OUT_OF_BAND_LABEL = "OOB";
long bandEdges[NUM_BANDS][2] = { long bandEdges[NUM_BANDS][2] = {
{1800000, 2000000}, //160m {1800000, 2000000}, //160m
{3500000, 4000000}, //80m {3500000, 4000000}, //80m
{5288600, 5288800},
{7000000, 7300000}, //40m {7000000, 7300000}, //40m
{10100000, 10150000}, //30m {10100000, 10150000}, //30m
{14000000, 14350000}, //20m {14000000, 14350000}, //20m
@ -63,6 +97,19 @@ long bandEdges[NUM_BANDS][2] = {
{28000000, 29700000} //10m {28000000, 29700000} //10m
}; };
long WSPRbandEdges[NUM_BANDS][2] = {
{1838000, 1838200}, //160m
{3594000, 3594200}, //80m
{5288600, 5288800}, //60m
{7040000, 7040200}, //40m
{10140100, 10140300}, //30m
{14097000, 14097200}, //20m
{18106000, 18106200}, //17m
{21096000, 21096200}, //15m
{24926000, 24926200}, //12m
{28126000, 28126200}, //10m
};
/* /*
* Holds the last-seen frequency within each band. The list below is also the default location at bootup. * Holds the last-seen frequency within each band. The list below is also the default location at bootup.
* This array is updated when the BAND button is used to change between bands. * This array is updated when the BAND button is used to change between bands.
@ -73,6 +120,7 @@ long bandEdges[NUM_BANDS][2] = {
long lastBandFreq[NUM_BANDS] = { long lastBandFreq[NUM_BANDS] = {
1800000, //160m 1800000, //160m
3500000, //80m 3500000, //80m
5288600, //60m
7000000, //40m 7000000, //40m
10100000, //30m 10100000, //30m
14000000, //20m 14000000, //20m
@ -97,6 +145,9 @@ boolean displayNeedsUpdate;
const long MIN_FREQ = 8500; const long MIN_FREQ = 8500;
const long MAX_FREQ = 150000000; const long MAX_FREQ = 150000000;
//Onboard LED Steup
const int PIN_LED = 13;
//---------LCD SETUP-------// //---------LCD SETUP-------//
int PIN_RS = 7; int PIN_RS = 7;
int PIN_EN = 8; int PIN_EN = 8;
@ -136,14 +187,16 @@ void setup(){
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0); si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0);
si5351.set_freq(currFreq * 100ULL, 0ULL, SI5351_CLK0); si5351.set_freq(currFreq * 100ULL, 0ULL, SI5351_CLK0);
si5351.output_enable(SI5351_CLK0, 1); enableOutput();
si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_8MA); si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_8MA);
si5351.output_enable(SI5351_CLK1, 0); si5351.output_enable(SI5351_CLK1, 0);
si5351.output_enable(SI5351_CLK2, 0); si5351.output_enable(SI5351_CLK2, 0);
delay(750); delay(750);
//knob.write(0); pinMode(PIN_LED, OUTPUT);
digitalWrite(PIN_LED, LOW);
pinMode(PIN_BUTTON_ENCODER, INPUT); pinMode(PIN_BUTTON_ENCODER, INPUT);
digitalWrite(PIN_BUTTON_ENCODER, HIGH); digitalWrite(PIN_BUTTON_ENCODER, HIGH);
@ -173,17 +226,52 @@ void loop(){
displayNeedsUpdate = false; displayNeedsUpdate = false;
//step up or down or change step size, for either button presses or encoder turns //step up or down or change step size, for encoder turns
if ((encoderChange > 0)){currFreq += steps[currMode][stepIndex]; currFreq = min(currFreq, MAX_FREQ); setFrequency_5351(currFreq); displayNeedsUpdate = true;} if ((encoderChange > 0)){currFreq += steps[currMode][stepIndex]; currFreq = min(currFreq, MAX_FREQ); setFrequency_5351(currFreq); displayNeedsUpdate = true;}
if ((encoderChange < 0)){currFreq -= steps[currMode][stepIndex]; currFreq = max(currFreq, MIN_FREQ); setFrequency_5351(currFreq); displayNeedsUpdate = true;} if ((encoderChange < 0)){currFreq -= steps[currMode][stepIndex]; currFreq = max(currFreq, MIN_FREQ); setFrequency_5351(currFreq); displayNeedsUpdate = true;}
//pressing the encoder button increments through the possible step sizes for each mode //pressing the encoder button increments through the possible step sizes for each mode;
if (checkButtonPress(PIN_BUTTON_ENCODER)){stepIndex = (stepIndex + 1) % (NUM_STEP_OPTIONS[currMode]); displayNeedsUpdate = true;} //in WSPR or CQ modes, the encoder button triggers the transmission of WSPR or a CQ, respectively.
if (checkButtonPress(PIN_BUTTON_ENCODER)){
if (currMode == mode_testing || currMode == mode_basic || currMode == mode_polyakov || currMode == mode_bfo) {
stepIndex = (stepIndex + 1) % (NUM_STEP_OPTIONS[currMode]);
displayNeedsUpdate = true;
}
else if (currMode == mode_WSPR){
transmitWSPR();
}
else if (currMode == mode_CQ){
transmitMorseWord(CQ);
transmitSpace();
transmitMorseWord(CQ);
transmitSpace();
transmitMorseWord(DE);
transmitSpace();
transmitMorseWord(morseCallsign);
transmitSpace();
transmitMorseWord(morseCallsign);
}
}
//pressing the mode button cycles through the available modes //pressing the mode button cycles through the available modes
if (checkButtonPress(PIN_BUTTON_MODE)){currMode = (currMode+1) % NUM_MODES; stepIndex = 0; setFrequency_5351(currFreq); displayNeedsUpdate = true;} if (checkButtonPress(PIN_BUTTON_MODE)){
currMode = (currMode+1) % NUM_MODES;
stepIndex = 0;
if (currMode == mode_WSPR){ //If entering WSPR mode, set the current freqency to the bottom of the WSPR band slice
currFreq = findWSPRBand();
}
/*The mode button: if currFreq is inside an amateur band, save that frequency as the one to return to when if (currMode == mode_WSPR || currMode == mode_CQ){
disableOutput(); //In WSPR or CQ mode, the transmitter should be off until manually triggered
}
else{
enableOutput(); //In all other modes, the output of the VFO is on by default
}
setFrequency_5351(currFreq);
displayNeedsUpdate = true;
}
/*The band button: if currFreq is inside an amateur band, save that frequency as the one to return to when
* the user returns to this band, and jump to the return frequency for the next higher band. Otherwise, * the user returns to this band, and jump to the return frequency for the next higher band. Otherwise,
* just jump to the next higher band * just jump to the next higher band
*/ */
@ -203,6 +291,10 @@ void loop(){
if (currFreq < lastBandFreq[i]){currFreq = lastBandFreq[i]; setFrequency_5351(currFreq); break;} if (currFreq < lastBandFreq[i]){currFreq = lastBandFreq[i]; setFrequency_5351(currFreq); break;}
} }
} }
if (currMode == mode_WSPR){ //WSPR mode behaves differntly from other modes
currFreq = WSPRbandEdges[getCurrentBand()][0];
setFrequency_5351(currFreq);
}
displayNeedsUpdate = true; displayNeedsUpdate = true;
} }
} }
@ -302,7 +394,7 @@ boolean checkButtonPress(int pin){
void setFrequency_5351(long newFreq){ void setFrequency_5351(long newFreq){
switch (currMode){ switch (currMode){
case mode_testing: case mode_testing:
si5351.set_freq(newFreq * 100ULL, 0ULL, SI5351_CLK0); si5351.set_freq((newFreq + correctionFactor) * 100ULL, 0ULL, SI5351_CLK0);
break; break;
case mode_basic: case mode_basic:
si5351.set_freq(newFreq * 100ULL, 0ULL, SI5351_CLK0); si5351.set_freq(newFreq * 100ULL, 0ULL, SI5351_CLK0);
@ -316,6 +408,16 @@ void setFrequency_5351(long newFreq){
} }
} }
void enableOutput(){
si5351.output_enable(SI5351_CLK0, 1);
digitalWrite(PIN_LED, HIGH);
}
void disableOutput(){
si5351.output_enable(SI5351_CLK0, 0);
digitalWrite(PIN_LED, LOW);
}
//Returns the index of the current amateur radio band based on currFreq. Does not include the 60m band //Returns the index of the current amateur radio band based on currFreq. Does not include the 60m band
//Returns -1 if out of band, but within the HF amateur turning range //Returns -1 if out of band, but within the HF amateur turning range
//returns -2 if out of band and lower than the lowest defined band //returns -2 if out of band and lower than the lowest defined band
@ -374,3 +476,112 @@ char getPermission(){
return 'X'; return 'X';
} }
void transmitWSPR(){
long startTime = millis();
enableOutput();
for (int dataFrame = 0; dataFrame < 162; dataFrame++){
si5351.set_freq((currFreq + correctionFactor) * 100ULL + (146*WSPR_TRANSMISSION_DATA[dataFrame]*1ULL), SI5351_PLL_FIXED, SI5351_CLK0);
displayWSPR(dataFrame);
while (millis() < startTime + 683*(dataFrame+1)){
if (checkButtonPress(PIN_BUTTON_ENCODER) || dataFrame > 162){
goto escape;
}
}
}
escape:
disableOutput();
displayNeedsUpdate = true;
}
void displayWSPR(int frame){
lcd.clear();
lcd.setCursor(0,0);
long printFreq = currFreq * 100ULL + (146*WSPR_TRANSMISSION_DATA[frame]*1ULL);
lcd.print(printFreq);
//current frame and data are printed on the 3rd line
lcd.setCursor(0, 2);
lcd.print("FRAME:");
lcd.setCursor(6, 2);
lcd.print(frame);
lcd.setCursor(10, 2);
lcd.print("DATA:");
lcd.setCursor(15, 2);
lcd.print(WSPR_TRANSMISSION_DATA[frame]);
//The current amateur band is printed in the top-right corner
int currBand = getCurrentBand();
if (currBand >= 0){
char* currBandName = bandNames[currBand];
lcd.setCursor(20-strlen(currBandName), 0);
lcd.print(currBandName);
}
else{
lcd.setCursor(20-strlen(OUT_OF_BAND_LABEL), 0);
lcd.print(OUT_OF_BAND_LABEL);
}
//Callsign is printed at the beginning of the 4th line
lcd.setCursor(0, 3);
lcd.print("KK9JEF");
//The mode is printed on the 4th line with no label
//lcd.setCursor(6, 3);
lcd.setCursor(16, 3);
lcd.print("WSPR");
}
//When switching into WSPR mode, the VFO jumps to the WSPR portion of the appropriate band; if not inside a band when switching to WSPR mode,
//This fucntion determines where to jump to.
//Currently always resets to the bottom of the lowest band
long findWSPRBand(){
/*switch (getCurrentBand()){
case -2: //Below the lowest defined band
currFreq = WSPRbandEdges[0][0]; //set frequency to the bottom edge of lowest band
break;
case -3: //Above the highest defined band
currFreq = WSPRbandEdges[NUM_BANDS-1][0]; //Set frequency to bottom edge of highest band
break;
case -1: //in between bands
break;
default:
currFreq = currFreq = (currFreq % 5); //round to the nearest multiple of 5 hz, for readability in WSPR mode
break;
}
*/
return WSPRbandEdges[0][0];
}
void transmitMorseWord(char singleWord[]){
for (int i = 0; i < strlen(singleWord); i++){
if (singleWord[i] == '-') transmitDash();
else if (singleWord[i] == '.') transmitDot();
else transmitIntracharacter();
}
}
void transmitDash(){
enableOutput();
delay(morseElementLength * 3);
disableOutput();
delay(morseElementLength);
}
void transmitDot(){
enableOutput();
delay(morseElementLength);
disableOutput();
delay(morseElementLength);
}
void transmitIntracharacter(){
disableOutput();
delay(morseElementLength*2); //each element naturally has a one-dot space built in
}
void transmitSpace(){
disableOutput();
delay(morseElementLength*6); //each element naturally has a one-dot space built in that follows it.
}