Fix WSPR functionality, Add califbration routine, store calibration in EEPROM

This commit is contained in:
JeffersGlass 2016-05-12 14:46:25 -05:00
parent f7349de7a8
commit 4d09abcf0a

View File

@ -1,3 +1,4 @@
#include <EEPROM.h>
#include <Encoder.h> #include <Encoder.h>
#include <Wire.h> #include <Wire.h>
#include <LiquidCrystal.h> #include <LiquidCrystal.h>
@ -23,7 +24,8 @@ long morseElementLength = 70; //ms
//FOR WSPR MODE //FOR WSPR MODE
int correctionFactor = 0; //adjusts the offset of the Si5351 double correctionFactor = 0; //adjusts the offset of the Si5351, in parts per million
double prevCorrectionFactor = correctionFactor; //allows us to track whether the CF has changed, to save on EEPROM writes
int WSPR_TRANSMISSION_DATA[] = { //KK9JEF EN61 30 int WSPR_TRANSMISSION_DATA[] = { //KK9JEF EN61 30
3,3,2,0,0,0,0,0,3,0,0,2,1,1,1,0,0,2,1,2,2,1,0,3,1,3,1,2,2,0, 3,3,2,0,0,0,0,0,3,0,0,2,1,1,1,0,0,2,1,2,2,1,0,3,1,3,1,2,2,0,
0,0,2,2,1,0,2,3,0,1,2,0,2,2,2,2,3,2,3,1,2,0,1,3,2,3,2,0,2,1, 0,0,2,2,1,0,2,3,0,1,2,0,2,2,2,2,3,2,3,1,2,0,1,3,2,3,2,0,2,1,
@ -44,11 +46,11 @@ int WSPR_TRANSMISSION_DATA[] = { //KK9JEF EN61 27
//-----Enumerations of frequency steps and their labels for each mode----// //-----Enumerations of frequency steps and their labels for each mode----//
enum modes{mode_testing = 0, mode_basic, mode_polyakov, mode_bfo, mode_WSPR, mode_CQ}; enum modes{mode_testing = 0, mode_basic, mode_polyakov, mode_bfo, mode_WSPR, mode_CQ, mode_calibrate};
const int NUM_MODES = 6; const int NUM_MODES = 7;
int currMode = mode_basic; int currMode = mode_basic;
char* modeNames[NUM_MODES] = {"TEST", "VFO", "POLYA", "BFO", "WSPR", "CQ"}; char* modeNames[NUM_MODES] = {"TEST", "VFO", "POLYA", "BFO", "WSPR", "CQ", "CAL"};
long steps[][10] = { //don't forget to update the NUM_STEP_OPTIONS array below long steps[][10] = { //don't forget to update the NUM_STEP_OPTIONS array below
{10000000, 5000000, 1000000, 500000, 100000, 10000, 1000, 10, 1}, //testing {10000000, 5000000, 1000000, 500000, 100000, 10000, 1000, 10, 1}, //testing
@ -56,7 +58,8 @@ long steps[][10] = { //don't forget to update the NUM_STEP_OPTIONS array below
{1000, 100, 10, 1}, //polyakov {1000, 100, 10, 1}, //polyakov
{1000, 100, 10, 1}, //bfo {1000, 100, 10, 1}, //bfo
{5}, //WSPR {5}, //WSPR
{500} //CQ {500}, //CQ
{1} //calibrate
}; };
const int NUM_STEP_OPTIONS[NUM_MODES] = { const int NUM_STEP_OPTIONS[NUM_MODES] = {
@ -65,7 +68,8 @@ const int NUM_STEP_OPTIONS[NUM_MODES] = {
4, //polyakov 4, //polyakov
4, //bfo 4, //bfo
1, //wspr 1, //wspr
1 //cq 1, //cq
1 //calibrate
}; };
char* stepNames[][10] = { char* stepNames[][10] = {
{" 10MHz", " 5MHz", " 1MHz", "500Khz", "100KHz", " 10KHz", " 1KHz", " 100Hz", " 10Hz", " 1 Hz"}, //basic {" 10MHz", " 5MHz", " 1MHz", "500Khz", "100KHz", " 10KHz", " 1KHz", " 100Hz", " 10Hz", " 1 Hz"}, //basic
@ -73,7 +77,8 @@ char* stepNames[][10] = {
{" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"}, //polyakov {" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"}, //polyakov
{" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"}, //BFO {" 1KHz", " 100 Hz", " 10 Hz", " 1 Hz"}, //BFO
{" 5 Hz"}, //WSPR {" 5 Hz"}, //WSPR
{" 500Hz"} //CQ {" 500Hz"}, //CQ
{" 1 ppm"} //Calibrate
}; };
int stepIndex = 0; // holds the index of the currently selected step value int stepIndex = 0; // holds the index of the currently selected step value
@ -185,15 +190,6 @@ void setup(){
lcd.setCursor(4, 1); lcd.setCursor(4, 1);
lcd.print("VFO STARTING"); lcd.print("VFO STARTING");
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0);
si5351.set_freq(currFreq * 100ULL, 0ULL, SI5351_CLK0);
enableOutput();
si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_8MA);
si5351.output_enable(SI5351_CLK1, 0);
si5351.output_enable(SI5351_CLK2, 0);
delay(750);
pinMode(PIN_LED, OUTPUT); pinMode(PIN_LED, OUTPUT);
digitalWrite(PIN_LED, LOW); digitalWrite(PIN_LED, LOW);
@ -208,6 +204,31 @@ void setup(){
pinMode(PIN_SWR_FORWARD, INPUT); pinMode(PIN_SWR_FORWARD, INPUT);
pinMode(PIN_SWR_REVERSE, INPUT); pinMode(PIN_SWR_REVERSE, INPUT);
lcd.clear();
lcd.setCursor(0,1);
lcd.print("READING CALIBRATION");
double tempDouble;
EEPROM.get(0, correctionFactor);
//if (tempDouble < 0.00001 && tempDouble > -0.00001){correctionFactor = tempDouble;}
//else {correctionFactor = 0.00f;}
lcd.setCursor(0, 2);
lcd.print("*");
lcd.print(tempDouble);
lcd.setCursor(0, 3);
lcd.print("=");
lcd.print(correctionFactor);
delay(1000);
si5351.init(SI5351_CRYSTAL_LOAD_8PF, 0);
si5351.set_freq((currFreq * (1 + correctionFactor)) * 100ULL, 0ULL, SI5351_CLK0);
enableOutput();
si5351.drive_strength(SI5351_CLK0, SI5351_DRIVE_8MA);
si5351.output_enable(SI5351_CLK1, 0);
si5351.output_enable(SI5351_CLK2, 0);
delay(300);
lcd.clear(); lcd.clear();
lcd.setCursor(2, 7); lcd.setCursor(2, 7);
lcd.print("WELCOME!"); lcd.print("WELCOME!");
@ -227,8 +248,14 @@ void loop(){
displayNeedsUpdate = false; displayNeedsUpdate = false;
//step up or down or change step size, for encoder turns //step up or down or change step size, for encoder turns
if ((encoderChange > 0)){currFreq += steps[currMode][stepIndex]; currFreq = min(currFreq, MAX_FREQ); setFrequency_5351(currFreq); displayNeedsUpdate = true;} if (currMode != mode_calibrate){
if ((encoderChange < 0)){currFreq -= steps[currMode][stepIndex]; currFreq = max(currFreq, MIN_FREQ); setFrequency_5351(currFreq); displayNeedsUpdate = true;} if ((encoderChange > 0)){currFreq += steps[currMode][stepIndex]; currFreq = min(currFreq, MAX_FREQ); setFrequency_5351(currFreq); displayNeedsUpdate = true;}
if ((encoderChange < 0)){currFreq -= steps[currMode][stepIndex]; currFreq = max(currFreq, MIN_FREQ); setFrequency_5351(currFreq); displayNeedsUpdate = true;}
}
else{
if (encoderChange > 0){correctionFactor += 0.0000001; setFrequency_5351(currFreq); displayNeedsUpdate = true;}
if (encoderChange < 0){correctionFactor -= 0.0000001; setFrequency_5351(currFreq); displayNeedsUpdate = true;}
}
//pressing the encoder button increments through the possible step sizes for each mode; //pressing the encoder button increments through the possible step sizes for each mode;
//in WSPR or CQ modes, the encoder button triggers the transmission of WSPR or a CQ, respectively. //in WSPR or CQ modes, the encoder button triggers the transmission of WSPR or a CQ, respectively.
@ -251,12 +278,47 @@ void loop(){
transmitSpace(); transmitSpace();
transmitMorseWord(morseCallsign); transmitMorseWord(morseCallsign);
} }
else if (currMode == mode_calibrate){
correctionFactor = 0.00;
}
} }
//pressing the mode button cycles through the available modes //pressing the mode button cycles through the available modes
if (checkButtonPress(PIN_BUTTON_MODE)){ if (checkButtonPress(PIN_BUTTON_MODE)){
//if the correctionFacotr has changed and we're leaving calibration mode, write the new correction factor to the EEPROM
//Note that we do this check before actually advancing to the next mode
if (currMode == mode_calibrate && correctionFactor != prevCorrectionFactor){
writeCF();
//DEBUG
lcd.clear();
lcd.setCursor(0, 0);
lcd.print("CALIBRATION STORED");
delay(1000);
displayNeedsUpdate = true;
double tempDouble;
EEPROM.get(0, tempDouble);
if (tempDouble < 0.00001 && tempDouble > -0.00001){correctionFactor = tempDouble;}
else correctionFactor = 0.00f;
lcd.setCursor(0, 2);
lcd.print("*");
lcd.print(tempDouble);
lcd.setCursor(0, 3);
lcd.print("=");
lcd.print(correctionFactor);
delay(10000);
}
//actually change the mode, and reset the step index
currMode = (currMode+1) % NUM_MODES; currMode = (currMode+1) % NUM_MODES;
stepIndex = 0; stepIndex = 0;
//if entering calibration mode, make a note of the current correction factor so we can tell later if it changes
if (currMode == mode_calibrate){
prevCorrectionFactor = correctionFactor;
}
if (currMode == mode_WSPR){ //If entering WSPR mode, set the current freqency to the bottom of the WSPR band slice if (currMode == mode_WSPR){ //If entering WSPR mode, set the current freqency to the bottom of the WSPR band slice
currFreq = findWSPRBand(); currFreq = findWSPRBand();
} }
@ -357,24 +419,22 @@ void displayInfo(){
lcd.setCursor(20-strlen(modeNames[currMode]), 3); lcd.setCursor(20-strlen(modeNames[currMode]), 3);
lcd.print(modeNames[currMode]); lcd.print(modeNames[currMode]);
//DEBUG //If we're in calibration mode, print current calibration factor on line 2:
//lcd.setCursor(0,0); if (currMode == mode_calibrate){
//lcd.print(getCurrentBand()); lcd.setCursor(0, 1);
lcd.print("CORRECTION");
/*float fwd = analogRead(PIN_SWR_FORWARD); int correctionPPM = int(correctionFactor * pow(10, 6));
float rev = analogRead(PIN_SWR_REVERSE);
float gamma = rev/fwd;
float swr = (1 + abs(gamma)) / (1 - abs(gamma));
lcd.setCursor(0, 1);
lcd.print(int(fwd));
lcd.setCursor(4, 1);
lcd.print(int(rev));
lcd.setCursor(8, 1);
lcd.print(gamma);
lcd.setCursor(14, 1);
lcd.print(swr);*/
int correctionPad = 0;
if (correctionPPM < 100) correctionPad++;
if (correctionPPM < 10) correctionPad++;
if (correctionPPM > 0) correctionPad++;
lcd.setCursor(9, 1);
for (int i = 0; i < correctionPad; i++) lcd.print(" ");
lcd.print(correctionPPM);
}
} }
boolean checkButtonPress(int pin){ boolean checkButtonPress(int pin){
@ -394,16 +454,25 @@ boolean checkButtonPress(int pin){
void setFrequency_5351(long newFreq){ void setFrequency_5351(long newFreq){
switch (currMode){ switch (currMode){
case mode_testing: case mode_testing:
si5351.set_freq((newFreq + correctionFactor) * 100ULL, 0ULL, SI5351_CLK0); si5351.set_freq((newFreq * (1 + correctionFactor)) * 100ULL, 0ULL, SI5351_CLK0);
break; break;
case mode_basic: case mode_basic:
si5351.set_freq(newFreq * 100ULL, 0ULL, SI5351_CLK0); si5351.set_freq((newFreq * (1 + correctionFactor)) * 100ULL, 0ULL, SI5351_CLK0);
break; break;
case mode_polyakov: case mode_polyakov:
si5351.set_freq((newFreq / 2) * 100ULL, 0ULL, SI5351_CLK0); si5351.set_freq(((newFreq * (1 + correctionFactor))/ 2) * 100ULL, 0ULL, SI5351_CLK0);
break; break;
case mode_bfo: case mode_bfo:
si5351.set_freq(newFreq * 100ULL, 0ULL, SI5351_CLK0); si5351.set_freq((newFreq * (1 + correctionFactor)) * 100ULL, 0ULL, SI5351_CLK0);
break;
case mode_WSPR:
si5351.set_freq((newFreq * (1 + correctionFactor)) * 100ULL, 0ULL, SI5351_CLK0);
break;
case mode_CQ:
si5351.set_freq((newFreq * (1 + correctionFactor)) * 100ULL, 0ULL, SI5351_CLK0);
break;
case mode_calibrate:
si5351.set_freq((newFreq * (1 + correctionFactor)) * 100ULL, 0ULL, SI5351_CLK0);
break; break;
} }
} }
@ -585,3 +654,7 @@ void transmitSpace(){
delay(morseElementLength*6); //each element naturally has a one-dot space built in that follows it. delay(morseElementLength*6); //each element naturally has a one-dot space built in that follows it.
} }
void writeCF(){
EEPROM.put(0, correctionFactor);
}